Research

Polytope Diameter, transportation polytopes, and the bipartite graph correspondence
  • J. Mackenzie Gallagher and Edward D. Kim. Tail diameter upper bounds for polytopes and polyhedra. [arxiv]
  • Edward D. Kim. Relating graphs of trigonometric functions to points on the unit circle via using special-purpose rulers. Wisconsin Teacher of Mathematics, 67(2):23-26, 2015.
  • J. Mackenzie Gallagher and Edward D. Kim. An improved upper bound on the diameters of subset partition graphs. 2014. [arxiv]
  • Tristram C. Bogart and Edward D. Kim. Superlinear subset partition graphs with strong adjacency, endpoint-count, and dimension reduction. To appear in Combinatorica, 2015. [arxiv]
  • Jesús A. De Loera and Edward D. Kim. Combinatorics and geometry of transportation polytopes: An update. In Discrete Geometry and Algebraic Combinatorics, volume 625 of Contemporary Mathematics, pages 37-76. American Mathematical Society, Providence, RI, 2014. [doi] [arxiv]
  • Edward D. Kim. Polyhedral graph abstractions and an approach to the Linear Hirsch Conjecture. Mathematical Programming, Series A, 143:357-370, 2014. [doi] [arxiv]
  • António Guedes de Oliveira, Edward D. Kim, Marc Noy, Arnau Padrol, Julian Pfeifle, Vincent Pilaud. Polytopal complexes realizing products of graphs. XIV Spanish Meeting on Computational Geometry, June 2011.
  • Edward Dong Huhn Kim. Geometric Combinatorics of Transportation Polytopes and the Behavior of the Simplex Method. PhD thesis, University of California, Davis. Davis, CA, 2010. [files]
  • Edward D. Kim, Francisco Santos. An update on the Hirsch conjecture. Jahresbericht der Deutschen Mathematiker-Vereinigung, 112(2):73-98, 2010. [doi] [arXiv]
  • Anna Gundert, Edward D. Kim, Daria Schymura. Lattice paths and Lagrangian matroids. Technical Report, Centre de Recerca Matemàtica, 2009.
  • Jesús A. De Loera, Edward D. Kim, Shmuel Onn, and Francisco Santos. Graphs of transportation polytopes. Journal of Combinatorial Theory, Series A, 116(8):1306-1325, 2009. [doi] [arXiv]

Powered by Jekyll, theme by Scott Emmons under Creative Commons Attribution. All of the code for this website can be viewed at GitHub.