J. Mackenzie Gallagher and Edward D. Kim.
Tail diameter upper bounds for polytopes and polyhedra.
[arxiv]
Edward D. Kim.
Relating graphs of trigonometric functions to points on the unit circle via using special-purpose rulers.
Wisconsin Teacher of Mathematics, 67(2):23-26, 2015.
J. Mackenzie Gallagher and Edward D. Kim.
An improved upper bound on the diameters of subset partition graphs.
2014.
[arxiv]
Tristram C. Bogart and Edward D. Kim.
Superlinear subset partition graphs with strong adjacency, endpoint-count, and dimension reduction.
To appear in Combinatorica, 2015.
[arxiv]
Jesús A. De Loera and Edward D. Kim.
Combinatorics and geometry of transportation polytopes: An update.
In Discrete Geometry and Algebraic Combinatorics,
volume 625 of Contemporary Mathematics,
pages 37-76.
American Mathematical Society, Providence, RI,
2014.
[doi][arxiv]
Edward D. Kim.
Polyhedral graph abstractions and an approach to the Linear Hirsch Conjecture.
Mathematical Programming, Series A, 143:357-370, 2014.
[doi][arxiv]
António Guedes de Oliveira, Edward D. Kim, Marc Noy, Arnau Padrol, Julian Pfeifle, Vincent Pilaud.
Polytopal complexes realizing products of graphs.
XIV Spanish Meeting on Computational Geometry,
June 2011.
Edward Dong Huhn Kim.
Geometric Combinatorics of Transportation Polytopes and the Behavior of the Simplex Method.
PhD thesis, University of California, Davis. Davis, CA, 2010. [files]
Edward D. Kim, Francisco Santos.
An update on the Hirsch conjecture.
Jahresbericht der Deutschen Mathematiker-Vereinigung, 112(2):73-98, 2010.
[doi][arXiv]
Anna Gundert, Edward D. Kim, Daria Schymura.
Lattice paths and Lagrangian matroids.
Technical Report, Centre de Recerca Matemàtica,
2009.
Jesús A. De Loera, Edward D. Kim, Shmuel Onn, and Francisco Santos.
Graphs of transportation polytopes.Journal of Combinatorial Theory, Series A, 116(8):1306-1325, 2009.
[doi][arXiv]