\documentclass\{article\}\usepackage[margin=1.Oin]\{geometry\}\%Makesmargins1in.Removeorcommentout(withpercent)ifyouwant.\begin\{document\}}\begin\{center\}}$\{\backslashbf$LaTeXbyExample\}\end\{center\}}Theidealmethodforproducingadocumentwithmathematicsis\LaTeX.Intextmode,useofspecialcommandsincurlybraces$\hookrightarrow\quadcan$maketext$\{\backslashbf$boldface$\}$or$\{\backslashit$italicized\}.SourceistypedinaplaintextfileandaPDFisproduced.Totry\hookrightarrowthisoutwithouttheneedtoinstallanythingonyourcomputer\backslashfootnote\{EasyinstalloptionsincludeTeXShopafter\hookrightarrowinstallingMacTeXonMac,orTeXworksafterinstallingMiKTeXonWindows.\},openafreeaccountat\{\tt\hookrightarrowwww.sharelatex.com\}.FollowthesourcecodewiththerenderedPDFside-by-side,keepinginmindthecurlybracesare\hookrightarrowusedbythesystemtogroupasingleentitytogether.Acompletelyemptylineinthesourcewillcreateanewparagraph(withindentation).Smallsnippetsofmathsuchas\a^m\rightarrow\quad\backslashcdota^{\wedge}n=a^{\wedge}\{m+n\}\$$or$\$\backslash\operatorname{sqrt}\{x-y\}\backslashnot=\backslash\operatorname{sqrt}\{x\}-\backslash$sqrt$\{y\}\$$areinmathmodeandcanbetypedwithindollarsigns.\hookrightarrowOtherexamplesincludesomethinglikethefollowing:if$\$\mathrm{p}\backslashleqq\$$,then$\$-\mathrm{p}\backslash\mathrm{geq}-\mathrm{q}\$$and$\$\backslash\mathrm{frac}\{1\}\{p\}\backslash\mathrm{geq}$$\hookrightarrow\quad\backslashfrac\{1\}\{q\}\$$,thoughfornotationincorporatingmoreinvolvedfractionssuchas$\backslash\left[\backslash\sin^{\wedge}2\backslash\right.$theta$=\backslash$frac$\{1-\backslash\cos(2\backslash$theta$\left.)\}\{2\}\backslash\right]$itmayhelptousethe\{\itother\}mathmode(usingbackslashandsquarebracketsinthesource)whichmakesalarger\rightarrowfractionwithallthenotationcenter-aligned.Sincetherewasnocompletelyemptylineinthesourcebeforeorafter\hookrightarrowthetrigidentity,allofthiscontentispartofthesecondparagraph,whichweendnow.undefined

Even based on the examples thusfar, your guesses for commands are probably correct. For instance, the exponential property
\hookrightarrow presented earlier implies $\$ \backslash l_{0} g_{-} a(s)+\backslash l_{o g} a(t)=\backslash l_{o g} a(s t) \$$ and by substituting a base of $\$ e \$$, one obtains
$\leftrightarrow \$ \backslash \ln (s)+\backslash \ln (t)=\backslash \ln (s t) \$$ as a special case. As another example, the Pythagorean Theorem leads to the distance formula of
$\rightarrow \$ \backslash$ sqrt $\left\{\left(x_{-} 1-x_{-} 2\right)^{\wedge} 2+\left(y_{-} 1-y_{_} 2\right)^{\wedge} 2\right\} \$$. Completing the square on $\$ \mathrm{ax}^{\wedge} 2+b x+c=0 \$$ leads to
$\backslash\left[\mathrm{x}=\backslash \mathrm{frac}\left\{-\mathrm{b} \backslash \mathrm{pm} \backslash \operatorname{sqrt}\left\{\mathrm{b}^{\wedge} 2-4 \mathrm{ac}\right\}\right\}\{2 \mathrm{a}\} . \backslash\right]$
Subscripts and other items which appear ''below', usually use an underscore (and often, if multiple items are needed, they $\leftrightarrow \quad$ are grouped using curly braces.) For example, if $\$ f(x)=x \wedge 2 \$$, then

$$
f'(x)\(=\backslashlim_{_}\{h\)\rightarrow0\}\frac\{(x+h)~2-x^2\}\{h\}\(=\backslashl^{\prime}m_{-}\left\{h\right.\)\rightarrow0\}\frac\{\(\left.x^{\wedge}2+2xh+h^{\wedge}2-x^{\wedge}2\right\}\{h\}\)\(=\backslashlim_{-}\{h~\backslashrightarrow~0\}~\frac\{h(2x+h)\}\{h\}\)\(=\backslashlim_{-}\{h\)\rightarrow0\}(\(2\mathrm{x}+\mathrm{h}\))\(=2\mathrm{x}\).\(\backslash]\)Theexampleabovedemonstratesthe'as\(\$\mathrm{~h}\$\)approaches\(\$0\$\)',textbeneaththelimitnotation.Somenotationlendsitselfto\(\hookrightarrow\)both''subscripts',and'superscripts',suchaswithendpointsofdefiniteintegralslike\(\backslash\left[\right.\)lint_\{-1\}^\{0\}\frac\{1\}\{1+x^2\}\\,dx\(\left.=\backslash\tan^{\wedge}\{-1\}(0)-\backslash\arctan(-1)=\backslashfrac\{\backslashpi\}\{4\},\backslash\right]\)since\(\$\backslash\tan^{\wedge}\{-1\}(-1)\$\)isequalto\(\$-\backslashfrac\{\backslashpi\}\{4\}\$\).Anothersettingwhere'subscripts',and'superscripts',areusefulis\(\rightarrow\)withsummationnotation:Hereisanewparagraph.(NoticetheindentationinthePDF.)Thereisnotationforessentiallyallmath.Here'scross\(\rightarrow\)product:\$\langle1,2,3\rangle\times\langle4,5,6\rangle=\langle-3,6,-3\rangle\$.Themathusedcanrangefrom\(\rightarrow\quadf\}\{\backslash\)partial\(y\}\)\rangle\$tosomethingmoreadvancedsuchas\(\$\mathrm{U}\)\otimes\(W\)\subseteq\(V\)\otimes\(\mathrm{W}\$\)if\(\$\mathrm{U}\)\subseteq\(\mathrm{V}\$\)or\(\leftrightarrow\)\Gamma_+^\{z,\tau,\lambda\}\\\(\$.Thisone-pagePDFdoesn'tshoweverything,butgivesasenseofwhatcanbedone,and}\)\(\hookrightarrow\)moreimportantly,how.Additionalsymbolscanbefoundusingthewebsite\{\ttdetexify\}.Somesymbolsrequirea\{4t\(\hookrightarrow\)usepackage\}line:ourexampleusesjustthe\{\ttgeometry\}package.Weendthisparagraphwithamatrix:\[\left[\begin\{array\}\{cc\}}1\&\(2\backslash\)3\&4lend\{array\}\right]
$$undefined

$\{\backslash b f$ Why use LaTeX instead of Word?\} Finding the symbols in Word's Equation Editor is time-consuming. Because your documents \hookrightarrow are probably thematic, it's much faster to know the popular math-mode commands in your subject area and \{\it type\} what
\hookrightarrow you need instead! LaTeX is free, files are small, and the same files work seamlessly across different operating
\hookrightarrow systems. Word files end up reformatting themselves when moving between different versions and operating systems.
\end\{document\} }

